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J. Phys. A :  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Degenerate vacuum formalism for spontaneous 
symmetry breakdown 

R. N. SEX and C. WEIL 
Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel 
MS. receiced 3rd September 1970, in reaised form 14th A p r i l  1971 

Abstract. The transformations $(x)  -+ 4 ( x )  +a of the free massless scalar field 
are rendered implementable in a separable Hilbert space by adjoining two 
conjugate operators (belonging to the zero-energy solutions of the wave 
equation) to the algebra of the usual particle creation and annihilation operators. 
The  result is an alternative formalism for the discussion of spontaneous 
symmetry breakdown. I t  is shown that extension of the formalism to the 
transformations A,(%) -+ A&) + x z  of a free massless vector field yields 
nontrivial zero-energy representations of the PoincarC group. 

1. Introduction 
In  order to formulate the problem which we mill discuss in this article, let us 

briefly recall the essential features of spontaneous symmetry breakdown. Let two 
scalar Heisenberg fields d l ( x )  and 4.J.) be related by an internal symmetry trans- 
formation 

By definition, the operator T,  which is formally unitary, commutes with the generators 
of the translations : 

Then, if the vacuum state IO), conventionally defined by Pw[O) = 0, has the pro- 
perties 

the symmetry defined by (1) is said to be ‘spontaneously broken’. In  that case, 
taking the vacuum expectation value of equation (1) we obtain, using (3), that 

T-l+,(x)T = &(x). (1) 

[Pi(, = 0 .  (2) 

(Ojd1,O) = 0 (O[gS,IO,~ = x # 0 (3) 

(OIT-lgS,(x)T~O> = x # 0 (4) 
which cannot be met if TiO) = IO), as in normal field theories. If on the other hand 
T[O)  # 10) then from (2) we find that 

P&( T:O >) = 0 

that is, the state TIO), if it exists, is degenerate with the vacuum. 
There are thus two possibilities for building up a Hilbert space in which the 

spontaneous symmetry breakdown conditions (3) can be realized : (i) The vacuum 
state i s  unique, in which case the operator T cannot be defined on it, and care is 
required in extracting physical information from the algebra of the symmetry opera- 
tors. (ii) The operator Tis defined on the cacuum state, in which case the latter must be 
degenerate in the physical Hilbert space. 

The  second of these formulations does not seem to have been developed in the 
literature?. We propose to fill this gap in the present paper. We will define a separ- 

? W e  are informed by the referee that the contents of section 2 had been developed 
independently by B. Zumino (unpublished). 
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able Hilbert space with a degenerate vacuum in which all symmetry operations are 
unitarily implementable. However, before this can be done, it is necessary to digress 
on the structure of the theory in the first formulation to track down precisely why the 
operator T is not implementable in it. 

Consider therefore, following Streater (1965), the simple example of a free 
massless Hermitian scalar field. The  field equation 

is invariant under the canonical transformations 

where Q is any real constant. However, these transformations cannot be implemented, 
that is, there exists no unitary operator satisfying (2) such that 

The  argument is the same as in the first paragraph, with T(cr), +(x) and +(x) + I 
replacing T,  +l(x) and +2(x) respectively. 

This seemingly trivial model displays all essential features of spontaneous sym- 
metry breakdown in the absence of gauge Heisenberg fields owing to Goldstone’s 
theorem (Goldstone 1961, Goldstone et al. 1962) and the dynamical rearrangement 
of symmetry (Sen and Umezawa 1967). The latter states that whenever a continuous 
internal symmetry is spontaneously broken (again, in the absence of gauge Heisenberg 
fields), the corresponding one-parameter transformations of the original Heisenberg 
fields are rearranged to zero-energy transformations (6) of massless scalar Goldstone 
fields. I n  a unique vacuum framework these transformations, as shown above, are 
not implementable. 

The  reason why these transformations are not implementable is that the usual 
Fock space is built out offinite-energy solutions of the wave equation ( 5 ) ,  whereas the 
real constants belong to the manifold of zero-energj’ solutions. The  transformations 
(6) change the ‘amplitude’, in +(x), of the zero-energy solution. Indeed, the usual 
plane wave decomposition of the field 

1 d3k 
( Z T ) ~ ! ~  1 2ko +(x) = -- -- {ak exp( - ikx) + a i  exp(ikx)} 

where 
ko = Ikl and kx koxo - k . x 

implies, in the limit k -+O 
a, = -a: 

that is, a, and a: cancel each other in +(x),  Furthermore, they are not canonically 
conjugate and do not destroy or create zero-momentum particles. 

It now becomes obvious that to arrive at a Hilbert space in which the trans- 
formations (6) are implementable, one has to include in it the zero-energy solutions 
of (j), which the Fock prescription does not do. 

In  the next section we construct the degenerate vacuum appropriate to the Goldstone 
mechanism. In  $ 3 we extend our formalism to the zero-energy transformations 
of a free massless vector field and construct an example of a nonLorentz invariant 
vacuum. Finally, we make some remarks on the implications of this work. 



634 R. N.  Sen and C. Weil 

2. Implementation of the zero-energy transformations of a massless neutral 
scalar field 
In  order to safeguard separability, we have to work with wave packets. We use 

the following notations: let {fi(k)} be a countable orthonormal basis in the space 
L2(R3) of square-integrable complex functions over the three-dimensional Euclidean 
space R3 

(fi, j j )  = J f ; (k ) j j (k )  d3k = a i j -  

Define, as usual, 
1 d3k 

fi( k )  exp( - ikx) , 

We now agree to set f , ( O )  = 0 for all i. This stipulation is Lorentz-invariant in the 
context which follows. The functions U,(.) form an orthonormal basis in the space 
of normalizable positive-energy solutions of equation ( j), with the customary Klein- 
Gordon scalar product 

f-) 

(U, i 1 u*(x)a,c(x) d3x ‘ 

by virtue of the isometry 
(U,, 4 K G  = (J’t,fj>. 

The  usual wave-packet expansion of 4(x) does not include a zero-energy part. We 
denote the zero-energy part by A and write the most general expansion as 

where A is a Hermitian operator, independent of x. 
The transformations (6) can now be isolated in the form 

T-ya)AT(a) = A + a .  

If the operators T(x)  are defined on a Hilbert space, they form a one-parameter 
group of unitary transformations. Hence there exists a Hermitian operator ,O such 
that 

T(a) = exp( - i@) 

with 
[A, 81 = i. (9) 

A and Q commute with all a ,  and U+. 

Thus, in a Hilbert space in which the transformations (6) are implementable, the 
algebra of the ‘particlc operators’ a, and at is augmented by the ‘vacuum operators’ 
A and Q. The  particle operators by themselves do not form an irreducible set. This 
is the essential new step which is required. The rest follows automatically. 

For example, in a ‘measurable field’ interpretation of the degenerate vacuum we 
would want the states of the system to approximate to eigenstates of .4: 

A j w )  = w l w )  

( w I w ’ )  = S ( w - w ’ )  
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where w is any real number. Then 

T(K)!cfJ) = Iwf r . ) .  

Let ( q i ( u ~ ) )  be a countable orthonormal Oasis of functions of fast decrease in L2(R), 
and define a countable orthonormal basis of states by 

l i >  = pwrl i (w)jw).  

The matrix elements of A and T ( M )  are now 

and 

<ilT(r.)lj) = J?;(w)rl:(w-4 d o .  
The  states l i}  are vacuum states, that is 

P,li) = 0 for all i 
and the orthonormal n-particle states are constructed as usual : 

li; n, ... nk ,.. ) = (nl!  ... nk! ...)-1/2(al)nl ... (a,$)n* ... li; 0 ) 
n = z n , , . <  CO 

where we have written li) as li; 0 )  for clarity. This Hilbert space is a cyclic repre- 
sentation of the augmented algebra based on the operators A, Q, at and a,. 

An alternative form of the degenerate vacuum can be constructed with a 'spurion' 
interpretation in mind. Define the spurion creation and annihilation operators 

1 1 
s = - (A+iQ) s t  = -(A-iQ) 
d2 112 

[s, St] = 1 

and construct the degenerate vacua Iv} as eigenstates of the spurion number operator 
sts. It is worth repeating that these spurions have no relation to the k -+ 0 limit of 
massless quanta. In this representation, the states with no spurions form the usual 
Fock space. 

3. Implementation of the zero-energy transformations of a massless vector 
field 
The considerations of 5 2 can easily be extended to the transformations 

a u ( 4  -+ a,(.> + ELl a,  constant (10) 
of a massless vector field a,(.). One arrives at degenerate vacua which are unitary 
representations of type 3 (Wigner 1939) of the PoincarC group, that is, infinite- 
dimensional unitary representations of the Lorentz group. 

As before, we write the zero-energy parts of a,(%) as A,, which are now Hermitian 
operators, and introduce the operators QLl which are conjugate to them: 

[ Q U ,  AV1 = i 9 U Y .  
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Define the vacuum states I w )  = Iwo, wl, w 2 ,  w g )  to be the eigenstates of A, in the 
continuum normalization : 

A U 1 4  = w,lw> 

( w l w ’ }  = 84(w-w’). 

The Lorentz-transformation properties of the states I w > follow from the observation 
that A,, being the zero-energy part of a,(x), is a four-vector, and so is Q,. If we 
assume that A, and QU together form an irreducible set of zero-energy operators, it 
is easy to see that the antisymmetric Hermitian tensor operators 

&I, E AUQy - AYQU 

generate the Lorentz transformations on the states I w } .  In  fact, the Lorentz trans- 
formation -4 which takes A to A’ = AA (= A,”AV) takes I w )  to ( A - l w ) .  Moreover, 
it is clear from (8) and (10) that A, is invariant under the translations 

%(X) -+ au(x+y)* 

Thus the infinite-dimensional manifold of states IAe), where 11 is a Lorentz trans- 
formation and CT, a fixed four-vector, forms an irreducible unitary representation 
of the Lorentz group (which is also a type 3 representation of the PoincarC group) on 
a nonseparable Hilbert space (the unitarity may be verified explicitly by calculating 
the matrix elements of - I u v ) .  Separability may be retrieved trivially, as before, by 
constructing ‘wave packets’. 

As in 9 2, we can build the degenerate vacuum in a spurion interpretation. We 
define 

1 

Then 
I S U ,  St1  = -g U V  

[Si‘, S”] = [SZ, s t ]  = 0.  

The ‘wrong’ sign of [so, s t ]  plays an interesting role. As required by it, we interpret 
si as an annihilation operator and construct the Fock space of spurions in the usual 
manner. Owing to the absence of the subsidiary condition, there is no restriction on 
admissible state vectors, and no vectors which cannot be normalized appear (Jauch 
and Rohrlich 1955, pp. 100-2). Thus the indefinite metric is not required. Kow 
denote so by bt and s t  by b, and write explicitly 

2 W i I  - - - i(slsj-s;s,) 
Mto = i(s,b - s,tb+), 

The last expression makes it evident that no finite-dimensional sector of the Fock 
space of spurions is Lorentz-invariant ; there are no nontrivial finite-dimensional 
unitary representations of a noncompact group. The Lorentz-invariant spaces are 
characterized by a constant dtffeerence between the number of ‘spacelike’ and ‘time- 
like’ spurions. 
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4. Concluding remarks 
(i) We have shown that the theory of degenerate vacua associated with imple- 

menting the zero-energy transformations of the massless scalar field can be developed 
by elementary means, I t  is evident that the formalism can be extended to the dynamical 
rearrangement of symmetry, with a certain gain in clarity owing to the disappearance 
of non-implementable operators from the theory. 

(ii) The  Lagrangian formulation of field theory cannot be extended to incorporate 
implementable zero-energy transformations. This is because the canonical definition 
of conjugate momentum 

does not admit a zero energy part in lT(x), even if the massless field $(x )  contains such 
a part. 

(iii) The method outlined in 4 3 applies equally to massless tensor fields of higher 
rank, and to indefinite metrics other than the Minkowski one. It provides an elemen- 
tary means of calculating explicitly, in the spurion picture, a class of nontrivial 
irreducible unitary representations of noncompact groups. 
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